

Chapter 14

447

At the time of this writing, NetworkX's support of Shapefile doesn't seem
to be compatible with Python 3.x. For this reason, this recipe has only
been successfully tested with Python 2.x.

How to do it…
1. Let's import the packages:

In [1]: import networkx as nx
 import numpy as np
 import pandas as pd
 import json
 import smopy
 import matplotlib.pyplot as plt
 %matplotlib inline

2. We load the data (a Shapefile dataset) with NetworkX. This dataset contains detailed
information about the primary roads in California. NetworkX's read_shp() function
returns a graph, where each node is a geographical position, and each edge contains
information about the road linking the two nodes. The data comes from the United
States Census Bureau website at www.census.gov/geo/maps-data/data/
tiger.html.
In [2]: g = nx.read_shp("data/tl_2013_06_prisecroads.shp")

3. This graph is not necessarily connected, but we need a connected graph in order to
compute shortest paths. Here, we take the largest connected subgraph using the
connected_component_subgraphs() function:
In [3]: sgs = list(nx.connected_component_subgraphs(
 g.to_undirected()))
 largest = np.argmax([len(sg)
 for sg in sgs])
 sg = sgs[largest]
 len(sg)
Out[3]: 464

4. We define two positions (with the latitude and longitude) and find the shortest path
between these two positions:
In [4]: pos0 = (36.6026, -121.9026)
 pos1 = (34.0569, -118.2427)

5. Each edge in the graph contains information about the road, including a list of points
along this road. We first create a function that returns this array of coordinates, for
any edge in the graph:
In [5]: def get_path(n0, n1):

Graphs, Geometry, and Geographic Information Systems

448

 """If n0 and n1 are connected nodes in the
 graph, this function returns an array of point
 coordinates along the road linking these
 two nodes."""
 return np.array(json.loads(
 sg[n0][n1]['Json'])['coordinates'])

6. We can notably use the road path to compute its length. We first need to define
a function that computes the distance between any two points in geographical
coordinates. This function has been found in Stack Overflow (http://
stackoverflow.com/questions/8858838/need-help-calculating-
geographical-distance):
In [6]: EARTH_R = 6372.8
 def geocalc(lat0, lon0, lat1, lon1):
 """Return the distance (in km) between two
 points in geographical coordinates."""
 lat0 = np.radians(lat0)
 lon0 = np.radians(lon0)
 lat1 = np.radians(lat1)
 lon1 = np.radians(lon1)
 dlon = lon0 - lon1
 y = np.sqrt(
 (np.cos(lat1)*np.sin(dlon))**2
 +(np.cos(lat0)*np.sin(lat1)
 -np.sin(lat0)*np.cos(lat1)* \
 np.cos(dlon))**2)
 x = np.sin(lat0)*np.sin(lat1) + \
 np.cos(lat0)*np.cos(lat1)*np.cos(dlon)
 c = np.arctan2(y, x)
 return EARTH_R * c

7. Now, we define a function computing a path's length:
In [7]: def get_path_length(path):
 return np.sum(geocalc(
 path[1:,0], path[1:,1],
 path[:-1,0], path[:-1,1]))

8. Now, we update our graph by computing the distance between any two connected
nodes. We add this information in the distance attribute of the edges:
In [8]: # Compute the length of the road segments.
 for n0, n1 in sg.edges_iter():
 path = get_path(n0, n1)
 distance = get_path_length(path)
 sg.edge[n0][n1]['distance'] = distance

Chapter 14

449

9. The last step before we can find the shortest path in the graph is to find the two
nodes in the graph that are closest to the two requested positions:
In [9]: nodes = np.array(sg.nodes())
 # Get the closest nodes in the graph.
 pos0_i = np.argmin(np.sum(
 (nodes[:,::-1] - pos0)**2,
 axis=1))
 pos1_i = np.argmin(np.sum(
 (nodes[:,::-1] - pos1)**2,
 axis=1))

10. Now, we use NetworkX's shortest_path() function to compute the shortest path
between our two positions. We specify that the weight of every edge is the length of
the road between them:
In [10]: # Compute the shortest path.
 path = nx.shortest_path(sg,
 source=tuple(nodes[pos0_i]),
 target=tuple(nodes[pos1_i]),
 weight='distance')
 len(path)
Out[10]: 19

11. The itinerary has been computed. The path variable contains the list of edges that
form the shortest path between our two positions. Now, we can get information about
the itinerary with pandas. The dataset has a few fields of interest, including the name
and type (State, Interstate, and so on) of the roads:
In [11]: roads = pd.DataFrame([
 sg.edge[path[i]][path[i + 1]]
 for i in range(len(path)-1)],
 columns=['FULLNAME', 'MTFCC',
 'RTTYP', 'distance'])
 roads
Out[11]: FULLNAME MTFCC RTTYP distance
0 State Rte 1 S1200 S 100.657768
1 State Rte 1 S1200 S 33.419581
...
16 Hollywood Fwy S1200 M 14.087627
17 Hollywood Fwy S1200 M 0.010107

Here is the total length of this itinerary:

In [12]: roads['distance'].sum()
Out[12]: 508.66421585288725

Graphs, Geometry, and Geographic Information Systems

450

12. Finally, let's display the itinerary on the map. We first retrieve the map with Smopy:
In [13]: map = smopy.Map(pos0, pos1, z=7, margin=.1)

13. Our path contains connected nodes in the graph. Every edge between two nodes is
characterized by a list of points (constituting a part of the road). Therefore, we need
to define a function that concatenates the positions along every edge in the path. We
have to concatenate the positions in the right order along our path. We choose the
order based on the fact that the last point in an edge needs to be close to the first
point in the next edge:
In [14]: def get_full_path(path):
 """Return the positions along a path."""
 p_list = []
 curp = None
 for i in range(len(path)-1):
 p = get_path(path[i], path[i+1])
 if curp is None:
 curp = p
 if np.sum((p[0]-curp)**2) > \
 np.sum((p[-1]-curp)**2):
 p = p[::-1,:]
 p_list.append(p)
 curp = p[-1]
 return np.vstack(p_list)

14. We convert the path in pixels in order to display it on the Smopy map:
In [15]: linepath = get_full_path(path)
 x, y = map.to_pixels(linepath[:,1], linepath[:,0])

15. Finally, let's display the map, with our two positions and the computed itinerary
between them:

In [16]: map.show_mpl()
 # Plot the itinerary.
 plt.plot(x, y, '-k', lw=1.5)
 # Mark our two positions.
 plt.plot(x[0], y[0], 'ob', ms=10)
 plt.plot(x[-1], y[-1], 'or', ms=10)

Chapter 14

451

How it works…
We computed the shortest path with NetworkX's shortest_path() function. Here, this
function used Dijkstra's algorithm. This algorithm has a wide variety of applications, for
example in network routing protocols.

There are different ways to compute the geographical distance between two points. Here,
we used a relatively precise formula: the orthodromic distance (also called great-circle
distance), which assumes that the Earth is a perfect sphere. We could also have used a
simpler formula since the distance between two successive points on a road is small.

There's more…
You can find more information about shortest path problems and Dijkstra's algorithm in the
following references:

 f Shortest paths on Wikipedia, available at http://en.wikipedia.org/wiki/
Shortest_path_problem

 f Dijkstra's algorithm, described at http://en.wikipedia.org/wiki/
Dijkstra%27s_algorithm

Graphs, Geometry, and Geographic Information Systems

452

Here are a few references about geographical distances:

 f Geographical distance on Wikipedia, at http://en.wikipedia.org/wiki/
Geographical_distance

 f Great circles on Wikipedia, at http://en.wikipedia.org/wiki/Great_circle

 f Great-circle distance on Wikipedia, at http://en.wikipedia.org/wiki/Great-
circle_distance

15
Symbolic and

Numerical Mathematics

In this chapter, we will cover the following topics:

 f Diving into symbolic computing with SymPy

 f Solving equations and inequalities

 f Analyzing real-valued functions

 f Computing exact probabilities and manipulating random variables

 f A bit of number theory with SymPy

 f Finding a Boolean propositional formula from a truth table

 f Analyzing a nonlinear differential system – Lotka-Volterra (predator-prey) equations

 f Getting started with Sage

Introduction
In this chapter, we will introduce SymPy, a Python library for symbolic mathematics. Whereas
most of the book deals with numerical methods, we will see examples here where symbolic
computations are more suitable.

SymPy is to symbolic computing what NumPy is to numerical computing. For example, SymPy
can help us analyze a mathematical model before we run a simulation.

Symbolic and Numerical Mathematics

454

Although quite powerful, SymPy is a bit slow compared to other computer algebra systems.
The main reason is that SymPy is written in pure Python. A faster and more powerful
mathematics system is Sage (see also the Getting started with Sage recipe in this chapter).
Sage is a heavy standalone program that has many big dependencies (including SymPy!), and
it uses only Python 2 at the time of writing. It is essentially meant for interactive use. Sage
includes an IPython-like notebook.

LaTeX
LaTeX is a document markup language widely used to write publication-quality mathematical
equations. Equations written in LaTeX can be displayed in the browser with the MathJax
JavaScript library. SymPy uses this system to display equations in the IPython notebook.

LaTeX equations can also be used in matplotlib. In this case, it is recommended to have a
LaTeX installation on your local computer.

Here are a few references:

 f LaTeX on Wikipedia, at http://en.wikipedia.org/wiki/LaTeX
 f MathJax, available at www.mathjax.org
 f LaTeX in matplotlib, described at http://matplotlib.org/users/usetex.html
 f Documentation for displaying equations with SymPy, available at http://docs.

sympy.org/latest/tutorial/printing.html

 f To install LaTeX on your computer, refer to http://latex-project.org/ftp.html

Diving into symbolic computing with SymPy
In this recipe, we will give a brief introduction to symbolic computing with SymPy. We will
see more advanced features of SymPy in the next recipes.

Getting ready
SymPy is a pure Python package with no other dependencies, and as such, it is very easy
to install. With Anaconda, you can type conda install sympy in a terminal. On Windows,
you can use Chris Gohlke's package (www.lfd.uci.edu/~gohlke/pythonlibs/#sympy).
Finally, you can use the pip install sympy command.

How to do it...
SymPy can be used from a Python module, or interactively in IPython. In the notebook, all
mathematical expressions are displayed with LaTeX, thanks to the MathJax JavaScript library.

Chapter 15

455

Here is an introduction to SymPy:

1. First, we import SymPy and enable LaTeX printing in the IPython notebook:
In [1]: from sympy import *
 init_printing()

2. To deal with symbolic variables, we first need to declare them:
In [2]: var('x y')
Out[2]: (x, y)

3. The var() function creates symbols and injects them into the namespace.
This function should only be used in the interactive mode. In a Python module,
it is better to use the symbols() function that returns the symbols:
In [3]: x, y = symbols('x y')

4. We can create mathematical expressions with these symbols:
In [4]: expr1 = (x + 1)**2
 expr2 = x**2 + 2*x + 1

5. Are these expressions equal?
In [5]: expr1 == expr2
Out[5]: False

6. These expressions are mathematically equal, but not syntactically identical.
To test whether they are mathematically equal, we can ask SymPy to simplify
the difference algebraically:
In [6]: simplify(expr1-expr2)
Out[6]: 0

7. A very common operation with symbolic expressions is the substitution of a
symbol by another symbol, expression, or a number, using the subs() method
of a symbolic expression:

Substitution in a SymPy expression

Symbolic and Numerical Mathematics

456

8. A rational number cannot be written simply as 1/2 as this Python expression
evaluates to 0. A possibility is to convert the number 1 into a SymPy integer
object, for example by using the S() function:
In [9]: expr1.subs(x, S(1)/2)
Out[9]: 9/4

9. Exactly represented numbers can be evaluated numerically with evalf:
In [10]: _.evalf()
Out[10]: 2.25000000000000

10. We can easily create a Python function from a SymPy symbolic expression using the
lambdify() function. The resulting function can notably be evaluated on NumPy
arrays. This is quite convenient when we need to go from the symbolic world to the
numerical world:

In [11]: f = lambdify(x, expr1)
In [12]: import numpy as np
 f(np.linspace(-2., 2., 5))
Out[12]: array([1., 0., 1., 4., 9.])

How it works...
A core idea in SymPy is to use the standard Python syntax to manipulate exact expressions.
Although this is very convenient and natural, there are a few caveats. Symbols such as x,
which represent mathematical variables, cannot be used in Python before being instantiated
(otherwise, a NameError exception is thrown by the interpreter). This is in contrast to most
other computer algebra systems. For this reason, SymPy offers ways to declare symbolic
variables beforehand.

Another example is integer division; as 1/2 evaluates to 0 (in Python 2), SymPy has no way
to know that the user intended to write a fraction instead. We need to convert the numerical
integer 1 to the symbolic integer 1 before dividing it by 2.

Also, the Python equality refers to the equality between syntax trees rather than between
mathematical expressions.

See also
 f The Solving equations and inequalities recipe

 f The Getting started with Sage recipe

Chapter 15

457

Solving equations and inequalities
SymPy offers several ways to solve linear and nonlinear equations and systems of equations.
Of course, these functions do not always succeed in finding closed-form exact solutions.
In this case, we can fall back to numerical solvers and obtain approximate solutions.

Getting ready
We first need to import SymPy. We also initialize pretty printing in the notebook (see the first
recipe of this chapter).

How to do it...
1. Let's define a few symbols:

In [2]: var('x y z a')
Out[2]: (x, y, z, a)

2. We use the solve() function to solve equations (the right-hand side is 0 by default):
In [3]: solve(x**2 - a, x)
Out[3]: [-sqrt(a), sqrt(a)]

3. We can also solve inequalities. Here, we need to use the solve_univariate_
inequality() function to solve this univariate inequality in the real domain:
In [4]: x = Symbol('x')
 solve_univariate_inequality(x**2 > 4, x)
Out[4]: Or(x < -2, x > 2)

4. The solve() function also accepts systems of equations (here, a linear system):
In [5]: solve([x + 2*y + 1, x - 3*y - 2], x, y)
Out[5]: {x: 1/5, y: -3/5}

5. Nonlinear systems are also handled:
In [6]: solve([x**2 + y**2 - 1, x**2 - y**2 - S(1)/2],
 x, y)
Out[6]: [(-sqrt(3)/2, -1/2), (-sqrt(3)/2, 1/2),
 (sqrt(3)/2, -1/2), (sqrt(3)/2, 1/2)]

6. Singular linear systems can also be solved (here, there is an infinite number of
solutions because the two equations are collinear):
In [7]: solve([x + 2*y + 1, -x - 2*y - 1], x, y)
Out[7]: {x: -2*y - 1}

Symbolic and Numerical Mathematics

458

7. Now, let's solve a linear system using matrices containing symbolic variables:
In [8]: var('a b c d u v')
Out[8]: (a, b, c, d, u, v)

8. We create the augmented matrix, which is the horizontal concatenation of the
system's matrix with the linear coefficients and the right-hand side vector. This
matrix corresponds to the following system in x,y: ax+by=u, cx+dy=v:
In [9]: M = Matrix([[a, b, u], [c, d, v]]); M
Out[9]: Matrix([[a, b, u],
 [c, d, v]])
In [10]: solve_linear_system(M, x, y)
Out[10]: {x: (-b*v + d*u)/(a*d - b*c),
 y: (a*v - c*u)/(a*d - b*c)}

9. This system needs to be nonsingular in order to have a unique solution, which is
equivalent to saying that the determinant of the system's matrix needs to be nonzero
(otherwise the denominators in the preceding fractions are equal to zero):

In [11]: det(M[:2,:2])
Out[11]: a*d - b*c

There's more...
Matrix support in SymPy is quite rich; we can perform a large number of operations and
decompositions (see the reference guide at http://docs.sympy.org/latest/
modules/matrices/matrices.html).

Here are more references about linear algebra:

 f Linear algebra on Wikipedia, at http://en.wikipedia.org/wiki/Linear_
algebra#Further_reading

 f Linear algebra on Wikibooks, at http://en.wikibooks.org/wiki/Linear_
Algebra

Analyzing real-valued functions
SymPy contains a rich calculus toolbox to analyze real-valued functions: limits, power series,
derivatives, integrals, Fourier transforms, and so on. In this recipe, we will show the very
basics of these capabilities.

Getting ready
We first need to import SymPy. We also initialize pretty printing in the notebook (see the first
recipe of this chapter).

Chapter 15

459

How to do it...
1. Let's define a few symbols and a function (which is just an expression depending

on x):
In [1]: var('x z')
Out[1]: (x, z)
In [2]: f = 1/(1+x**2)

2. Let's evaluate this function at 1:
In [3]: f.subs(x, 1)
Out[3]: 1/2

3. We can compute the derivative of this function:
In [4]: diff(f, x)
Out[4]: -2*x/(x**2 + 1)**2

4. What is f's limit to infinity? (Note the double o (oo) for the infinity symbol):
In [5]: limit(f, x, oo)
Out[5]: 0

5. Here's how to compute a Taylor series (here, around 0, of order 9).
The Big O can be removed with the removeO() method.
In [6]: series(f, x0=0, n=9)
Out[6]: 1 - x**2 + x**4 - x**6 + x**8 + O(x**9)

6. We can compute definite integrals (here, over the entire real line):
In [7]: integrate(f, (x, -oo, oo))
Out[7]: pi

7. SymPy can also compute indefinite integrals:
In [8]: integrate(f, x)
Out[8]: atan(x)

8. Finally, let's compute f's Fourier transforms:

In [9]: fourier_transform(f, x, z)
Out[9]: pi*exp(-2*pi*z)

There's more...
SymPy includes a large number of other integral transforms besides the Fourier transform
(http://docs.sympy.org/dev/modules/integrals/integrals.html). However,
SymPy will not always be able to find closed-form solutions.

Symbolic and Numerical Mathematics

460

Here are a few general references about real analysis and calculus:

 f Real analysis on Wikipedia, at http://en.wikipedia.org/wiki/Real_
analysis#Bibliography

 f Calculus on Wikibooks, at http://en.wikibooks.org/wiki/Calculus

Computing exact probabilities and
manipulating random variables

SymPy includes a module named stats that lets us create and manipulate random variables.
This is useful when we work with probabilistic or statistical models; we can compute symbolic
expectancies, variances probabilities, and densities of random variables.

How to do it...
1. Let's import SymPy and the stats module:

In [1]: from sympy import *
 from sympy.stats import *
 init_printing()

2. Let's roll two dice, X and Y, with six faces each:
In [2]: X, Y = Die('X', 6), Die('Y', 6)

3. We can compute probabilities defined by equalities (with the Eq operator) or
inequalities:
In [3]: P(Eq(X, 3))
Out[3]: 1/6
In [4]: P(X>3)
Out[4]: 1/2

4. Conditions can also involve multiple random variables:
In [5]: P(X>Y)
Out[5]: 5/12

5. We can compute conditional probabilities:
In [6]: P(X+Y>6, X<5)
Out[6]: 5/12

6. We can also work with arbitrary discrete or continuous random variables:
In [7]: Z = Normal('Z', 0, 1) # Gaussian variable
In [8]: P(Z>pi)
Out[8]: -erf(sqrt(2)*pi/2)/2 + 1/2

Chapter 15

461

7. We can compute expectancies and variances:
In [9]: E(Z**2), variance(Z**2)
Out[9]: (1, 2)

8. We can also compute densities:
In [10]: f = density(Z)
In [11]: var('x')
 f(x)
Out[11]: sqrt(2)*exp(-x**2/2)/(2*sqrt(pi))

9. We can plot these densities:

In [12]: %matplotlib inline
 plot(f(x), (x, -6, 6))

The Gaussian density

How it works...
SymPy's stats module contains many functions to define random variables with classical
laws (binomial, exponential, and so on), discrete or continuous. It works by leveraging
SymPy's powerful integration algorithms to compute exact probabilistic quantities as
integrals of probability distributions. For example, ()P Z π> is:

Note that the equality condition is written using the Eq operator rather than the more
standard == Python syntax. This is a general feature in SymPy; == means equality between
Python variables, whereas Eq is the mathematical operation between symbolic expressions.

Symbolic and Numerical Mathematics

462

A bit of number theory with SymPy
SymPy contains many number-theory-related routines: obtaining prime numbers, integer
decompositions, and much more. We will show a few examples here.

Getting ready
To display legends using LaTeX in matplotlib, you will need an installation of LaTeX on your
computer (see this chapter's Introduction).

How to do it...
1. Let's import SymPy and the number theory package:

In [1]: from sympy import *
 init_printing()
In [2]: import sympy.ntheory as nt

2. We can test whether a number is prime:
In [3]: nt.isprime(2011)
Out[3]: True

3. We can find the next prime after a given number:
In [4]: nt.nextprime(2011)
Out[4]: 2017

4. What is the 1000th prime number?
In [5]: nt.prime(1000)
Out[5]: 7919

5. How many primes less than 2011 are there?
In [6]: nt.primepi(2011)
Out[6]: 305

6. We can plot ()xπ , the prime-counting function (the number of prime numbers less
than or equal to some number x). The famous prime number theorem states that
this function is asymptotically equivalent to x/log(x). This expression approximately
quantifies the distribution of prime numbers among all integers:
In [7]: import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline
 x = np.arange(2, 10000)
 plt.plot(x, map(nt.primepi, x), '-k',
 label='$\pi(x)$')

Chapter 15

463

 plt.plot(x, x / np.log(x), '--k',
 label='$x/\log(x)$')
 plt.legend(loc=2)

Distribution of prime numbers

7. Let's compute the integer factorization of a number:
In [8]: nt.factorint(1998)
Out[8]: {2: 1, 3: 3, 37: 1}
In [9]: 2 * 3**3 * 37
Out[9]: 1998

8. Finally, a small problem. A lazy mathematician is counting his marbles. When they are
arranged in three rows, the last column contains one marble. When they form four
rows, there are two marbles in the last column, and there are three with five rows. How
many marbles are there? (Hint: The lazy mathematician has fewer than 100 marbles.)

Counting marbles with the Chinese Remainder Theorem

Symbolic and Numerical Mathematics

464

The Chinese Remainder Theorem gives us the answer:

In [10]: from sympy.ntheory.modular import solve_congruence
In [11]: solve_congruence((1, 3), (2, 4), (3, 5))
Out[11]: (58, 60)

There are infinitely many solutions: 58 plus any multiple of 60. Since there
are less than 100 marbles, 58 is the right answer.

How it works...
SymPy contains many number-theory-related functions. Here, we used the Chinese Remainder
Theorem to find the solutions of the following system of arithmetic equations:

()

()

1 1mod

modk k

n a m

n a m

≡

≡

�

The Chinese Remainder Theorem

The triple bar is the symbol for modular congruence. Here, it means that mi divides ai-n.
In other words, n and ai are equal up to a multiple of mi. Reasoning with congruences is
very convenient when periodic scales are involved. For example, operations involving 12-
hour clocks are done modulo 12. The numbers 11 and 23 are equivalent modulo 12 (they
represent the same hour on the clock) because their difference is a multiple of 12.

In this recipe's example, three congruences have to be satisfied: the remainder of the number
of marbles in the division with 3 is 1 (there's one extra marble in that arrangement), it is 2 in
the division with 4, and 3 in the division with 5. With SymPy, we simply specify these values in
the solve_congruence() function to get the solutions.

The theorem states that solutions exist as soon as the mi are pairwise co-prime (any
two distinct numbers among them are co-prime). All solutions are congruent modulo the
product of the mi. This fundamental theorem in number theory has several applications,
notably in cryptography.

There's more...
Here are a few textbooks about number theory:

 f Undergraduate level: Elementary Number Theory, Gareth A. Jones, Josephine M.
Jones, Springer, (1998)

Chapter 15

465

 f Graduate level: A Classical Introduction to Modern Number Theory, Kenneth Ireland,
Michael Rosen, Springer, (1982)

Here are a few references:

 f Documentation on SymPy's number-theory module, available at http://docs.
sympy.org/dev/modules/ntheory.html

 f The Chinese Remainder Theorem on Wikipedia, at http://en.wikipedia.org/
wiki/Chinese_remainder_theorem

 f Applications of the Chinese Remainder Theorem, given at http://mathoverflow.
net/questions/10014/applications-of-the-chinese-remainder-
theorem

Finding a Boolean propositional formula
from a truth table

The logic module in SymPy lets us manipulate complex Boolean expressions, also known as
propositional formulas.

This recipe will show an example where this module can be useful. Let's suppose that, in a
program, we need to write a complex if statement depending on three Boolean variables. We
can think about each of the eight possible cases (true, true and false, and so on) and evaluate
what the outcome should be. SymPy offers a function to generate a compact logic expression
that satisfies our truth table.

How to do it...
1. Let's import SymPy:

In [1]: from sympy import *
 init_printing()

2. Let's define a few symbols:
In [2]: var('x y z')

3. We can define propositional formulas with symbols and a few operators:
In [3]: P = x & (y | ~z); P
Out[3]: And(Or(Not(z), y), x)

4. We can use subs() to evaluate a formula on actual Boolean values:
In [4]: P.subs({x: True, y: False, z: True})
Out[4]: False

Symbolic and Numerical Mathematics

466

5. Now, we want to find a propositional formula depending on x, y, and z,
with the following truth table:

A truth table

6. Let's write down all combinations that we want to evaluate to True, and those for
which the outcome does not matter:
In [6]: minterms = [[1,0,1], [1,0,0], [0,0,0]]
 dontcare = [[1,1,1], [1,1,0]]

7. Now, we use the SOPform() function to derive an adequate formula:
In [7]: Q = SOPform(['x', 'y', 'z'], minterms, dontcare); Q
Out[7]: Or(And(Not(y), Not(z)), x)

8. Let's test that this proposition works:

In [8]: Q.subs({x: True, y: False, z: False}),
 Q.subs({x: False, y: True, z: True})
Out[8]: (True, False)

How it works...
The SOPform() function generates a full expression corresponding to a truth table and
simplifies it using the Quine-McCluskey algorithm. It returns the smallest Sum of Products
form (or disjunction of conjunctions). Similarly, the POSform() function returns a Product
of Sums.

Chapter 15

467

The given truth table can occur in this case: suppose that we want to write a file if it doesn't
already exist (z), or if the user wants to force the writing (x). In addition, the user can prevent
the writing (y). The expression evaluates to True if the file is to be written. The resulting SOP
formula works if we explicitly forbid x and y in the first place (forcing and preventing
the writing at the same time is forbidden).

There's more...
Here are a few references:

 f The propositional formula on Wikipedia, at http://en.wikipedia.org/wiki/
Propositional_formula

 f Sum of Products on Wikipedia, at http://en.wikipedia.org/wiki/
Canonical_normal_form

 f The Quine–McCluskey algorithm on Wikipedia, at http://en.wikipedia.org/
wiki/Quine%E2%80%93McCluskey_algorithm

Analyzing a nonlinear differential system –
Lotka-Volterra (predator-prey) equations

Here, we will conduct a brief analytical study of a famous nonlinear differential system:
the Lotka-Volterra equations, also known as predator-prey equations. These equations are
first-order differential equations that describe the evolution of two interacting populations (for
example, sharks and sardines), where the predators eat the prey. This example illustrates how
to obtain exact expressions and results about fixed points and their stability with SymPy.

Getting ready
For this recipe, knowing the basics of linear and nonlinear systems of differential equations
is recommended.

How to do it...
1. Let's create some symbols:

In [1]: from sympy import *
 init_printing()
In [2]: var('x y')
 var('a b c d', positive=True)
Out[2]: (a, b, c, d)

Symbolic and Numerical Mathematics

468

2. The variables x and y represent the populations of the prey and predators, respectively.
The parameters a, b, c, and d are strictly positive parameters (described more precisely
in the How it works... section of this recipe). The equations are:

() ()

() ()

dx f x x a by
dt
dy g x y c dx
dt

= = −

= = − −

Lotka-Volterra equations

In [3]: f = x * (a - b*y)
 g = -y * (c - d*x)

3. Let's find the fixed points of the system (solving f(x,y) = g(x,y) = 0). We call them
(x0, y0) and (x1, y1):
In [4]: solve([f, g], (x, y))
Out[4]: [(0, 0), (c/d, a/b)]
In [5]: (x0, y0), (x1, y1) = _

4. Let's write the 2D vector with the two equations:
In [6]: M = Matrix((f, g)); M
Out[6]: Matrix([[x*(a - b*y)],
 [-y*(c - d*x)]])

5. Now, we can compute the Jacobian of the system, as a function of (x, y):
In [7]: J = M.jacobian((x, y)); J
Out[7]: Matrix([
 [a - b*y, -b*x],
 [d*y, -c + d*x]])

6. Let's study the stability of the first fixed point by looking at the eigenvalues of the
Jacobian at this point. The first fixed point corresponds to extinct populations:
In [8]: M0 = J.subs(x, x0).subs(y, y0); M0
Out[8]: Matrix([a, 0],
 [0, -c]])
In [9]: M0.eigenvals()
Out[9]: {a: 1, -c: 1}

The parameters a and c are strictly positive, so the eigenvalues are real and
of opposite signs, and this fixed point is a saddle point. As this point is unstable,
the extinction of both populations is unlikely in this model.

7. Let's consider the second fixed point now:
In [10]: M1 = J.subs(x, x1).subs(y, y1); M1

Chapter 15

469

Out[10]: Matrix([[0, -b*c/d],
 [a*d/b, 0]])
In [11]: M1.eigenvals()
Out[11]: {-I*sqrt(a)*sqrt(c): 1, I*sqrt(a)*sqrt(c): 1}

The eigenvalues are purely imaginary; thus, this fixed point is not hyperbolic. Therefore,
we cannot draw conclusions from this linear analysis about the qualitative behavior of
the system around this fixed point. However, we could show with other methods that
oscillations occur around this point.

How it works...
The Lotka-Volterra equations model the growth of the predator and prey populations, taking
into account their interactions. In the first equation, the ax term represents the exponential
growth of the prey, and -bxy represents death by predators. Similarly, in the second equation,
-yc represents the natural death of the predators, and dxy represents their growth as they eat
more and more prey.

To find the equilibrium points of the system, we need to find the values x, y such that dx/dt
= dy/dt = 0, that is, f(x, y) = g(x, y) = 0, so that the variables do not evolve anymore. Here, we
were able to obtain analytical values for these equilibrium points with the solve() function.

To analyze their stability, we need to perform a linear analysis of the nonlinear equations, by
taking the Jacobian matrix at these equilibrium points. This matrix represents the linearized
system, and its eigenvalues tell us about the stability of the system near the equilibrium point.
The Hartman–Grobman theorem states that the behavior of the original system qualitatively
matches the behavior of the linearized system around an equilibrium point if this point is
hyperbolic (meaning that no eigenvalues of the matrix have a real part equal to 0). Here,
the first equilibrium point is hyperbolic as a, c > 0, but the second is not.

Here, we were able to compute symbolic expressions for the Jacobian matrix and its
eigenvalues at the equilibrium points.

There's more...
Even when a differential system is not solvable analytically (as is the case here), a
mathematical analysis can still give us qualitative information about the behavior of the
system's solutions. A purely numerical analysis is not always relevant when we are interested
in qualitative results, as numerical errors and approximations can lead to wrong conclusions
about the system's behavior.

Symbolic and Numerical Mathematics

470

Here are a few references:

 f Matrix documentation in SymPy, available at http://docs.sympy.org/dev/
modules/matrices/matrices.html

 f Dynamical systems on Wikipedia, at http://en.wikipedia.org/wiki/
Dynamical_system

 f Equilibrium points on Scholarpedia, at www.scholarpedia.org/article/
Equilibrium

 f Bifurcation theory on Wikipedia, at http://en.wikipedia.org/wiki/
Bifurcation_theory

 f Chaos theory on Wikipedia, at http://en.wikipedia.org/wiki/Chaos_
theory

 f Further reading on dynamical systems, at http://en.wikipedia.org/wiki/
Dynamical_system#Further_reading

Getting started with Sage
Sage (www.sagemath.org) is a standalone mathematics software based on Python. It is an
open source alternative to commercial products such as Mathematica, Maple, or MATLAB. Sage
provides a unified interface to many open source mathematical libraries. These libraries include
SciPy, SymPy, NetworkX, and other Python scientific packages, but also non-Python libraries
such as ATLAS, BLAS, GSL, LAPACK, Singular, and many others.

In this recipe, we will give a brief introduction to Sage.

Getting ready
You can either:

 f Install Sage on your local computer (www.sagemath.org/doc/installation/)
 f Create Sage notebooks remotely in the cloud (https://cloud.sagemath.com/)

Being based on so many libraries, Sage is heavy and hard to compile from source. Binaries
exist for most systems except Windows, where you generally have to use VirtualBox (a
virtualization solution: www.virtualbox.org).

Alternatively, you can use Sage in a browser with an IPython notebook running on the cloud.

Note that Sage is not compatible with Python 3 at the time of this writing.

Chapter 15

471

Typically, Sage is used interactively with the built-in notebook (which resembles the IPython
notebook). If you want to use Sage in a Python program (that is, importing Sage from Python),
you need to run Sage's built-in Python interpreter (www.sagemath.org/doc/faq/faq-
usage.html#how-do-i-import-sage-into-a-python-script).

How to do it...
Here, we will create a new Sage notebook and introduce the most basic features:

1. Sage accepts mathematical expressions as we would expect:
sage: 3*4
12

2. Being based on Python, Sage's syntax is almost Python, but there are a few
differences. For example, the power exponent is the more classical ^ symbol:
sage: 2^3
8

3. Like in SymPy, symbolic variables need to be declared beforehand with the var()
function. However, the x variable is always predefined. Here, we define a new
mathematical function:
sage: f=1-sin(x)^2

4. Let's simplify the expression of f:
sage: f.simplify_trig()
cos(x)^2

5. Let's evaluate f on a given point:
sage: f(x=pi)
1

6. Functions can be differentiated and integrated:
sage: f.diff(x)
-2*cos(x)*sin(x)
sage: f.integrate(x)
1/2*x + 1/4*sin(2*x)

7. Sage also supports numerical computations in addition to symbolic computations:
sage: find_root(f-x, 0, 2)
0.6417143708729723

Symbolic and Numerical Mathematics

472

8. Sage also comes with rich plotting capabilities (including interactive plotting widgets):

sage: f.plot((x, -2*pi, 2*pi))

There's more...
This (too) short recipe cannot do justice to the huge list of possibilities offered by Sage.
Many aspects of mathematics are covered: algebra, combinatorics, numerical mathematics,
number theory, calculus, geometry, graph theory, and many others. Here are a few references:

 f An in-depth tutorial on Sage, available at www.sagemath.org/doc/tutorial/

 f The Sage reference manual, available at www.sagemath.org/doc/reference/

 f Videos on Sage, available at www.sagemath.org/help-video.html

See also
 f The Diving into symbolic computing with SymPy recipe

Index
Symbols
2to3 tool

about 47
reference link 48
using 48

100 NumPy exercises
reference link 132

44100 Hz sampling rate
reference link 354

%%cython cell magic 166
%debug magic command 75
%lprun command 123
%memit magic command

using, in IPython 126
%pdb on command 75
%%prun cell magic 118
%prun line magic 118
@pyimport macro 197
%run magic command 51, 118
%%timeit cell magic 117
%timeit command 117

A
adaptive histogram equalization

reference link 357
adjacency list 418
adjacency matrix 418
advanced image processing algorithms

reference link 354
advanced optimization methods, image

processing
reference link 314

alternative parallel computing
solutions, Python

references 188

Anaconda distribution
reference link 13

analog signal 334
annotations 165
Anti-Grain Geometry

about 223
reference link 224

API reference, InteractiveShell
reference link 36

API reference, skimage.feature module
reference link 370

API reference, skimage.filter module
reference link 361

API reference, skimage.morphology module
reference link 366

architecture, IPython notebook
about 81
multiple clients, connecting to kernel 82

array buffers 165
array computations

accelerating, with Numexpr 158, 159
array interface, NumPy

reference link 132
arrays

manipulating, with HDF5 142-145
manipulating, with PyTables 142-145

array selections
making, in NumPy 138, 139

array views 138
assert-like functions, NumPy

reference link 72
asynchronous parallel tasks

interacting with 189-191
AsyncResult class

elapsed attribute 191
get() method 192

474

metadata attribute 191
progress attribute 191
ready() method 191
reference link, for documentation 192
serial_time attribute 191
successful() method 191
wait() method 192

attributes, InteractiveShell class
audio filters

reference link 377
audio signal processing

reference link 354, 377
augmented matrix 458
autocorrelation

computing, of time series 349-352
reference link 352

AutoHotKey
reference link 61

AutoIt
reference link 61

automated testing 67
AVX 130

B
bagging 298
ball trees 288
band-pass filter

about 348
reference link 349

basemap
about 251, 442
geospatial data, manipulating with 443-445
references 420, 443

batch rendering 222
Bayesianism

reference link, for blog 228
Bayesian methods

computation, of posterior distribution 239
overview 237, 238
posteriori estimation, maximizing 240
reference 261

Bayesian theory 236
Bayes' theorem 237, 238
Bazaar 53
Bernoulli distribution

reference link 234

Bernoulli Naive Bayes classifier 291
bias-variance dilemma

about 271
reference link 271

bias-variance tradeoff
about 254
reference 254

bifurcation diagram
about 384
plotting, of chaotic dynamical

system 383-386
reference 387

Bifurcation theory
reference link 470

Binomial distribution
reference 237

Birnbaum-Sanders distribution
about 249
reference link 249

bisection method
about 315
reference link 317

Bitbucket 53
bivariate method 227
BLAS 130
Blaze

about 150, 156
reference link 148, 157

Blinn-Phong shading model
about 173
reference link 173

block 179
blocking mode 186
Bokeh

about 208
references 208, 211
used, for creating interactive web

visualizations 208-210
Bokeh figures 211
Boolean propositional formula

finding, from truth table 465, 466
Boosting

reference link 373
bootstrap aggregating 298
boundary condition 383
branches

references 59

475

branching 56
brentq() method 316
Brent's method

about 316
reference link 317

broadcasting rules
about 129, 132
reference link 132

Brownian motion
about 410
references 412
simulating 410, 411

Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm 318

B-tree 145
bus factor

references 62
Butterworth filter 348

C
calculus

about 458
references 460

Canopy distribution
reference link 13

cardinal sine 318
CART 301
cartopy

about 420
reference link 421

cascade classification API reference, OpenCV
reference link 373

cascade tutorial, OpenCV (C++)
reference link 373

causal filters 347
cdef keyword 165
cells 15, 441
cellular automaton 382
Census Bureau website

reference link 447
cffi

references 163
Chaos theory

references 386, 470
chaotic dynamical system

about 383

bifurcation diagram, plotting of 383-386
chi2 test, SciPy documentation

reference link 245
Chinese Remainder Theorem

about 464
references 465

chi-squared test
about 243-245
reference 245
used, for estimating correlation between

variables 241-244
Chromatic scale

reference link 379
chunks 145
classical graph problems

examples 418, 419
classification

about 269
examples 269

Classification and Regression Trees.
See CART

C library
wrapping, with ctypes 159-162

clustering
about 270, 306
hidden structures, detecting in

dataset 306-309
references 310

clusters 144, 270, 306
CMA-ES algorithm

reference link 323
code

debugging, with IPython 74, 75
parallelizing, with MPI 192-194
profiling, cProfile used 117-119
profiling, IPython used 117-121
profiling, with line_profiler 121-123
writing 48

code cells 17
code coverage

references 66
code debugging, with IPython

post-mortem mode 75
step-by-step debugging mode 75

coin tossing experiment 234
column-major order 131
command prompt 14

476

commit 55
Comms 107
compilation, with Cython

reference link 167
compiler-related installation instructions

about 151
Linux 152
Mac OS X 152
Windows 152

complex systems
reference 386

compressed sensing
about 335, 361
references 336

Computer-Aided Design (CAD) 220
concurrent programming 151
conda 61, 66
conditional probability distribution 238
Configurable class

about 38
example 38

configuration file 38
configuration object 38
configuration system, IPython

Configurable class 38
configuration file 38
configuration object 38
HasTraits class 38
mastering 36, 37
user profile 38

conjugate distributions
about 240
reference 240

connected-component labeling 437
connected components

about 434, 437
computing, in image 434-437
reference link 438

connected graph 418
constrained optimization algorithm 329
contiguous block 31, 145
contingency table

about 243-245
reference 245
used, for estimating correlation between

variables 241-244
continuous functions 312

continuous integration systems
about 74
references 66

continuous optimization 311
Continuous-time process

reference 409
Continuum Analytics

reference link 154
Contrast

reference link 357
Contrast Limited Adaptive Histogram

Equalization (CLAHE) 356
conversion examples, nbconvert

reference link 94
convex functions 312
convex optimization

about 312
reference link 314

convolutions
about 346
references 348

Conway's Game of Life
about 390
reference 390

corner detection
reference link 370

corner detection example, scikit-image
reference link 370

correlation coefficient
reference 244

counting process 408
course, Computational Fluid Dynamics

reference link 383, 399
Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) algorithm 322
coverage module 73
coveralls.io service 73
cProfile

reference link, for documentation 121
used, for profiling code 117-119

CPython 151
CRAN

reference link 266
credible interval

about 240
reference 240

477

cross-validation
about 276, 280, 281
grid search, performing with 281-284
reference link 280

CSS
references 99

CSS style
customizing, in notebook 96-98

CSV (Comma-separated values) 23
ctypes

about 150, 159
used, for wrapping C library 159-162

CUDA
about 176
massively parallel code, writing for NVIDIA

graphics cards (GPUs) 175-180
references 180

CUDA cores 179
CUDA programming model

block 179
grid 179
kernel 179
thread 179

CUDA SDK
reference link 177

cumulative distribution function
(CDF) 236, 249

curvefit
reference documentation 326

curve fitting 324
curve fitting regression problem 273
custom controls

adding, in notebook toolbar 94-96
custom JavaScript widget

creating, for notebook 103-107
custom magic commands

IPython extension, creating with 32-34
Cython

about 150, 163
Python code, accelerating with 163-165
reference link, for installing 163

Cython code
integrating, within Python package 166
optimizing 167-173

Cython extension types
reference link 173

Cython, installing on Windows
reference link 153

Cython, installing on Windows 64-bit
reference link 153

Cython modules
reference link 167

D
D3.js

about 211
NetworkX graph, visualizing with 211-214
references 211, 214

D3.js visualizations
matplotlib figures, converting to 215-217

data
analyzing, R used 261-265

data buffers
about 130
index buffers 221
textures 221
vertex buffers 221

data dimensions
observations 227
variables 227

data manipulation, pandas
references 27

data point 268
dataset

dimensionality, reducing with principal
component analysis (PCA) 302-305

exploring, with matplotlib 229-232
exploring, with pandas 229-232
hidden structures, detecting in 306-309

data structures, for graphs
reference link 420

data type 30
datautils package 73
data visualization 270, 302
debugger

references 76
debugging 74
decisions trees 298
decision theory 227
defensive programming 64
degree of belief 228

478

Delaunay triangulation
about 442
reference link 442

dependencies
about 187
functional dependency 187
graph dependency 187

Dependency Walker
reference link 153

dependent parallel tasks 187
descartes package

about 419, 442
reference link 420, 443

design patterns 64
deterministic algorithm 314
deterministic dynamical systems

about 382
cellular automaton 382
discrete-time dynamical systems 382
Ordinary Differential Equations (ODEs) 382
Partial Differential Equations (PDEs) 382

development version, Vispy
reference 218

dichotomy method. See bisection method
difference equation 347
differentiable functions 312
differential equations 382
digital filters

applying, to speech sounds 374-376
digital signal

about 334, 346
linear filters, applying to 343-346
resolution 334
sampling rate 334

digital signal processing
references 348

Dijkstra's algorithm
about 451
reference link 451

dilation 365
dimensionality 268
direct acyclic graph (DAG)

about 260, 433
dependencies, resolving with topological

sort 430-433
reference link 434

directed graph 418

direct interface 186
discrete convolution 360
Discrete Fourier Transform (DFT) 341
discrete optimization 311
discrete-time dynamical system 382
discrete-time Markov chain

about 402
simulating 402-405

discrete-time signal 334
distributed version control system

about 53
working 55

document classification example, scikit-learn
reference link 293

DRAM (Dynamic Random Access
Memory) 180

dtype. See data type
Dynamically Linked Libraries (DLLs) 159
dynamical systems

references 383, 470

E
Eclipse/PyDev 52
edges 418
ego graph 427
elementary cellular automaton

about 387
simulating 387-389

elements, in rendering pipeline of OpenGL
data buffers 221
primitive type 221
shaders 221
variables 221

embarrassingly parallel problem 405
empirical distribution function 249
engines output printing, in real-time

reference 192
ensemble learning 298
Equal temperament

reference link 379
equations

solving 457, 458
equations, SymPy

reference link 454
equilibrium points, Scholarpedia

reference link 470

479

equilibrium state, of physical system
finding, by minimizing potential

energy 326-330
ESRI shapefile 420
Eulerian paths

reference link 419
Euler-Maruyama method

about 412
reference 416

Euler method
about 393
reference 394

exact probabilities
computing 460, 461

examples, classification
handwritten digit recognition 269
spam filtering 269

expectation-maximization algorithm
about 309
reference link 310

exploratory data analysis, IPython 22-26
exploratory methods 226
exponential distribution

reference 247
extension system, IPython

reference link, for documentation 35
extrema

reference link 314

F
Fast Fourier Transform (FFT)

about 337
used, for analyzing frequency components

of signal 337-340
feature extraction 270
feature scaling 270
feature selection

about 270
references 271

features, for regression
selecting, random forests used 298-301

feedback term 347
feedforward term 347
FFmpeg

reference link 374
fftfreq() utility 339

filters
applying, on image 358-360

filters, frequency domain 347
Finite Impulse Response (FIR) filter

about 347
references 348

Fiona
reference links 420, 442

FIR filter 344
FitzHugh-Nagumo system

references 399
fixtures 71
FLoating-point Operations Per Second. See

FLOPS
flood-fill algorithm

about 437
reference link 438

FLOPS 175
fluid dynamics 382
Fokker-Planck equation

about 411
reference link 412

Folium
reference link 421

force-directed graph drawing
reference link 425

forking 59
Fourier transforms

about 335
references 342

fragment shader 219
frequency components, signal

analyzing, with Fast Fourier
Transform (FFT) 337-340

frequentism
reference link, for blog 228

frequentist method
about 228
reference link, for classic misuses 228

frequentist methods, hypothesis testing 233
frequentists 236
Fruchterman-Reingold force-directed

algorithm 424
functional dependency 187
function, fitting to data

nonlinear least squares used 324, 325

480

G
Gaussian filter

about 358
reference link 361

Gaussian kernel 254
GCC (GNU Compiler Collection) 152
GDAL/OGR

reference link 442
General Purpose Programming on Graphics

Processing Units. See GPGPU
geographical distances

reference link 452
Geographic Information Systems

(GIS) 418, 420
geometry

references 420
GeoPandas

about 420
reference link 421

geospatial data
manipulating, with basemap 443-445
manipulating, with Shapely 443-445

ggplot2
reference link 208

ggplot, for Python
reference link 208

GIL
reference link 151

Git
about 53, 56
references 56

git branch command 57
Git branching

workflow 56-58
git diff command 57
git-flow 58
GitHub 53
git log command 57
Gitorious 53
git remote add command 55
git status command 57
Global Interpreter Lock (GIL)

about 151
reference link 151

glue language 10

Google code 53
GPGPU 176
gradient

reference link, for definition 322
gradient descent 321
graph coloring

reference link 418
graph dependency 187
Graphics Processing Units (GPUs) 150, 175
graphs

about 417, 418
edges 418
manipulating, with NetworkX 421-423
nodes 418
references 420
vertices 418
visualizing, with NetworkX 421, 423

graph theory
reference link 420

graph-tool package
about 419
reference link 420

graph traversal
reference link 418

GraphViz
reference link 260

grayscale image 354
great-circle distance 451
grid 179
grid search

about 280, 281
performing, with cross-validation 281-284
reference link 280

Gross Domestic Product (GDP) 442
groups. See clusters
GUI debuggers 77
GUI on Mac OS X 54
GUI on Windows 54
Guppy-PE

reference link 126

H
h5py

about 142
references 145, 146

481

Haar cascades library
reference link 373

Hamiltonian paths
reference link 419

Handsontable JavaScript library
reference link 103

handwritten digit recognition 269
handwritten digits

recognizing, K-nearest neighbors (K-NN)
classifier used 285-288

Harris corner measure response image 368
Harris matrix 369
Hartman-Grobman theorem 469
HasTraits class 38
HDF5

about 142
arrays, manipulating with 142-145
heterogeneous tables, manipulating

with 146-148
HDF5 chunking

references 146
heat equation 411
Hessian 322
heterogeneous computing 181
heterogeneous platforms

massively parallel code, writing for 181-184
heterogeneous tables

manipulating, with HDF5 146-148
manipulating, with PyTables 146-148

hidden structures
detecting, in dataset 306-309

Hierarchical Data Format. See HDF5
high-level plotting interfaces

references 208
high-pass filter

about 348
reference link 349

high-quality Python code
writing 63-66

histogram 355
histogram equalization

reference link 357
holding times 409
Hooke's law

reference link 330
hubs 419

I
IDEs 50, 52
IDEs, for Python

reference link 52
IHaskell 80
IJulia package

about 80, 150
reference link 195

image
about 354
connected components,

computing in 434-437
filters, applying on 358-360
points of interest, finding in 367-369
segmenting 362-366

image denoising
reference link 361

image exposure
manipulating 355-357

image histogram
reference link 357

image processing
reference link 354

image processing, SciPy lecture notes
reference link 366

image processing tutorial, scikit-image
reference link 370

image segmentation
reference link 366

Impermium Kaggle challenge
reference link 293

implicit-copy operations
versus in-place operations 130

impulse responses
references 348

independent variables 382
indexing routines

reference link 140
index, IPython extensions

reference link 36
inequalities

solving 457, 458
Infinite Impulse Response (IIR) filter

about 347
references 348

initial condition 383

482

in-kernel queries
about 148
references 148

in-place operations
versus implicit-copy operations 130

instance-based learning
example 288
reference link 289

Integrated Development
Environments. See IDEs

integrate package, SciPy
reference link, for documentation 394

Intel Math Kernel Library (MKL) 130
interactive computing workflow, IPython 50
InteractiveShell class

about 34
attributes 35
methods 35

interactive web visualizations
creating, with Bokeh 208-210

interactive widgets
using 99-102

interest point detection
reference link 370

intermediate value theorem
about 316
reference link 317

Inverse Discrete Fourier Transform 342
Inverse Fast Fourier Transform 342
ipycache 61
IPython

%memit magic command, using in 126
about 10, 50
code, debugging with 74, 75
code, parallelizing with MPI 192-194
configuration system, mastering 36, 37
embedding, within program 76
exploratory data analysis 22-26
interacting, with asynchronous

parallel tasks 189-191
interactive computing workflows 50
kernel, creating for 39-44
NetworkX graph, visualizing

with D3.js 211-214
Python code, distributing across multiple

cores 185-187
references 39

time, evaluating by statement 117
reference link 14
reference link, for installation instructions 14
used, for profiling code 117-121
using, with text editor 51

IPython 2.0 81
IPython blocks

used, for teaching programming in
notebook 84-87

IPython documentation
reference link 82

IPython engines 186
IPython extension

about 33
creating, with custom magic

commands 32-34
loading 35

IPython notebook
about 52
architecture 81
converting to other formats,

with nbconvert 89-93
data analyzing, with R programming

language 261-265
overview 13-19

IPython.parallel
references 188

IPython terminal 50
IPython-text editor workflow 51
IPython tutorial

reference link 266
Iris flower data set

reference link 305
IRuby 80
iterated functions

reference link 387
Itō calculus

reference link 416

J
Jacobian matrix 469
JavaScript Object Notation. See JSON
joblib 61, 188
JSON 80, 89
Julia

about 150, 195

483

reference links 195, 200
strengths 199
trying, in notebook 195-198

Jupyter
about 80
reference link 80

Just-In-Time compilation (JIT)
about 150
Python code, accelerating with 154-156

K
Kaggle

about 281
references 281, 289

Kartograph
about 420
reference link 421

KDE implementations, scikit-learn
reference link 254

KDE implementations, statsmodels
reference link 254

K-D trees 288
kernel

about 10, 179, 254, 296
creating, for IPython 39-44
multiple clients, connecting to 82

KernelBase API
reference link 44

kernel density estimation (KDE)
about 251-253
reference link 254
used, for estimating probability distribution

nonparametrically 251-254
kernel spec 43
kernel trick 297
kernprof file

reference link, for downloading 123
Khronos Group 181
K-means algorithm

about 307
reference link 310

K-nearest neighbors (K-NN) classifier
about 285
handwritten digits, recognizing with 285-288
references 289

Kolmogorov-Smirnov test
about 249
reference link 250

L
L2 norm 278
Langevin equation

about 412
reference link 416

LAPACK 130
Laplacian matrix 424
LaTeX

about 17, 454
references 454

LaTeX equations 18
L-BFGS-B algorithm

about 329
reference link 330

least squares method
references 265, 280

Leave-One-Out cross-validation 280
left singular vectors 305
Levenberg-Marquardt algorithm

about 325
reference link 326

Lévi function 320
linear algebra

references 458
linear combination 134
linear filters

about 343, 346
and convolutions 346
applying, to digital signal 343-346
references 348

linear system 383
Linear Time-Invariant (LTI) 346
line_profiler

reference link 121
used, for profiling code 121-123

Linux 152
Lloyd's algorithm 309
LLVM (Low Level Virtual Machine) 156
load-balanced interface 186
locality of reference

about 130
reference link 132

484

local minimum 312, 313
local repository

creating 54
logistic map

about 384
reference link 387

logistic regression
about 281
references 285

Lotka-Volterra equations 467, 469
low-pass filter

about 348
reference link 349

Lyapunov exponent
about 384, 385
reference link 387

M
machine learning

about 267
references 267, 272

magic commands
about 16
cythonmagic 35
octavemagic 35
reference link 35
rmagic 35

Magics class 39
mandelbrot() function

about 160, 164
iterations argument 162, 177
pointer argument 162, 177
size argument 162, 177

manually-vectorized code
Numba, comparing with 157

manual testing 67
MAP

reference link 240
Maple 11
Markdown

about 17
reference link 60

Markdown cell 17
Markov chain Monte Carlo (MCMC)

about 261

Bayesian model, fitting by sampling from
posterior distribution 255-261

reference link 261
Markov chains

about 401
references 406

Markov property
about 401
reference link 402

Mathematica 11
mathematical function

minimizing 317-322
root, finding of 314-316

mathematical morphology
about 365
reference link 366

mathematical optimization
about 311
reference link 314

MathJax
about 454
reference link 454

matplotlib
about 10, 202
dataset, exploring with 229-232
reference link, for installation instructions 14
references, for improving styling 205

matplotlib figures
converting, to D3.js visualizations 215-217
improving, with prettyplotlib 202-205

matrix
about 30
reference link 458, 470

maxima
reference link 314

maximum a posteriori (MAP) 240
maximum likelihood estimate

about 247
reference link 250

maximum likelihood method
about 245
used for fitting, probability distribution

to data 246-250
memoize pattern 61
memory mapping

about 140, 142
NumPy arrays, processing with 140, 141

485

memory mapping, arrays 116
memory_profiler package

about 126
memory usage of code, profiling

with 124, 125
reference link, for downloading 125
using, for standalone Python programs 126

memory usage, of code
profiling, with memory_profiler 124, 125

Mercurial 53
merge 58
Message Passing Interface. See MPI
messaging protocols

reference link 44
Metaheuristics for function minimization

reference link 323
methods, InteractiveShell class

ev() 35
ex() 35
push() 35
register_magic_function() 35
run_cell() 35
safe_execfile() 35
system() 35
write() 35
write_err() 35

Metropolis-Hastings algorithm
about 255, 261
reference link 261

Milstein method
reference link 416

MinGW
reference link 152

minima
reference link 314

modal user interface 11
model selection

about 271
reference link 272

Model-View-Controller (MVC) 107
Monte Carlo method

about 255, 405
references 406

moving average method 348
MPI

about 192
code, parallelizing with 192-194

references, for tutorials 194
mpi4py package

reference link 192
MPICH

reference link 192
mpld3, GitHub

reference link 217
mpld3 library

about 215
matplotlib figures, converting to D3.js

visualizations 215-217
reference link, for installation

instructions 215
mplexporter framework 217
msysGit

reference link 53
multi-core processors

advantage, taking of 174
multidimensional array, NumPy

for fast array computations 28-31
multiple clients

connecting, to kernel 82
multiprocessing module 185
multiprocessors 179
multivariate method 227

N
Naive Bayes classifier

references 293
Natural Earth

reference link 442
Natural Language Toolkit. See NLTK
Navier-Stokes equations

about 383
reference link 383

nbconvert
about 21
references 21, 94
used, for converting IPython notebook

to other format 89-93
nbviewer

about 22
reference link 22, 94

NetworkX
about 419
graphs, manipulating with 421-423

486

graphs, visualizing with 421-423
reference link, for installation

instructions 421
social network, analyzing with 425-429

NetworkX graph
visualizing, with D3.js 211-214

Neumann boundary conditions
about 395
reference link 399

Newton's method
about 316
reference link 317, 323

Newton's second law of motion
about 393
reference link 394

NLTK
reference link 293

nodes 418
nogil keyword 175
noise reduction

reference link 361
non-informative prior distributions

about 241
reference link 241

nonlinear differential system
analyzing 467-469

nonlinear least squares
reference link 326
used, for fitting function to data 324, 325

nonlinear least squares curve fitting 323
nonlinear system 383
nonparametric estimation 251
nonparametric model 229
non-Python languages, notebook

reference link 83
nose

reference link, for documentation 71
unit tests, writing with 67-73

notebook
about 10, 80
contents 21, 22
CSS style, customizing in 96-98
custom JavaScript widget,

creating for 103-107
Julia language, trying in 195-198
programming, teaching with IPython

blocks 84-87

references 22, 80
security 82
sound synthesizer, creating in 377-379
webcam images, processing from 108-113

notebook architecture
references 83

notebook ecosystem 80
notebook toolbar

custom controls, adding in 94-96
notebook widgets 11, 12
null hypothesis 233
Numba

about 150, 154
comparing, with manually-vectorized

code 157
Python code, accelerating with 154-156
references 154, 157

number theory, SymPy
about 462-464
references 465

numerical methods, ODEs
references 394

Numexpr
about 150, 156-158
array computations, accelerating

with 158, 159
reference link, for installation

instructions 158
NumPy

about 10, 28, 453
efficient array selections, making in 138, 139
references 32
stride tricks, using with 133, 134
unnecessary array copying, avoiding 127-129

NumPy arrays
about 130
features 130
processing, with memory mapping 140, 141

numpy.ctypeslib module 159
NumPy optimization 116
NumPy routines

reference link 140
NumPy, Travis Oliphant

reference link 150
NVIDIA graphics cards (GPUs)

massively parallel code, writing for 175-180
Nyquist criterion 335

487

Nyquist frequency 335
Nyquist rate 335
Nyquist-Shannon sampling theorem

about 335
reference link 335

O
OAuth authentication codes 425
objective function 312
ODEPACK package, FORTRAN

reference link 394
Online Python Tutor

about 124
reference link 124

OpenCL
about 176
massively parallel code, writing for

heterogeneous platforms 181-184
references 180
resources 184

OpenCL compute unit 183
OpenCL NDRange 183
OpenCL SDKs

references 181
OpenCL work groups 183
OpenCL work items 183
Open Computer Vision (OpenCV)

about 354, 370
faces, detecting in image 370-372
references 354, 371

OpenGL 220
OpenGL ES 2.0 221
OpenGL Program 219
OpenGL Shading Language (GLSL) 221
OpenGL viewport 220
OpenMP 174
OpenStreetMap

reference link 420
OpenStreetMap service 420
order 382
ordinary differential equation

simulating, with SciPy 390-393
Ordinary Differential Equations (ODEs)

about 382, 390
reference link 394

ordinary least squares regression 278
Ornstein-Uhlenbeck process 412

reference link 416
orthodromic distance 451
Otsu's method

reference link 366
out-of-core computations 140
output areas 15
overfitting 268

about 271
reference link 271

P
packaging 66
pandas

about 11, 27, 232
dataset, exploring with 229-232
reference link, for installation instructions 14

pandoc
reference link, for documentation 89

ParallelPython 188
parameter vector 278
parametric estimation method 251
parametric method 228
partial derivatives 382
Partial Differential Equations (PDEs)

about 382, 394
references 399
simulating 395-399

partition 269
Pearson's correlation coefficient

about 244
reference link 244

PEP8 65
pep8 package 65
pickle module 61
Pillow

reference link, for installing 84
point process

about 257, 402, 406
reference link 409

points of interest
about 367
finding, in image 367-369

point sprites 223

488

Poisson process
about 257, 406
reference link 409
simulating 406-409

polynomial interpolation, linear
regression 279

posterior distribution 237
power spectral density (PSD) 338, 342
premature optimization 120
prettyplotlib

about 202
reference link, for installation

instructions 202
used, for improving matplotlib

figures 202-205
prime-counting function 462
prime number theorem 462
primitive assembly 221
primitive type 221
principal component analysis (PCA)

about 302
reference link 305
used, for reducing dataset

dimensionality 302-305
principal components 302, 305
principle of minimum energy

reference link 330
principle of minimum total potential

energy 329
prior probability distribution 228, 237
probabilistic model 228
probability distribution, fitting to data

maximum likelihood method used 246-250
probability distribution nonparametrically

estimating, with kernel density
estimation 251-254

probability mass function (PMF) 237
probit model

about 269
reference link 269

profiling 117
profiling tools, Python

reference link 121
program optimization

reference link 120
propositional formula

reference link 467

pstats
reference link, for documentation 121

psutil
reference link 125

PTVS 52
pull request 59
pure tone

about 379
reference link 379

p-value 235
PyAudio

reference link 377
PyCharm 52
PyCUDA

references 176, 177
pydot 301
pydub package

reference link, for downloading 373
Pylint

reference link 65
PyMC package

about 255
references 255, 261

Pympler
reference link 126

PyOpenCL
about 181
references 181, 184

pyplot 205
PyPy

about 150
references 150

PySizer
reference link 126

PyTables
about 142
arrays, manipulating with 142-145
heterogeneous tables, manipulating

with 146-148
references 142, 146

Python
about 150
references 12, 14

Python 2
about 14, 46
references 49
versus Python 3 46, 47

489

Python 2, or Python 3
selecting between 47

Python 2.x 153
Python 3

about 14, 46
references 49
versus Python 2 46, 47

Python 3.x 153
Python 32-bit 152
Python 64-bit 152
PythonAnywhere 188
python-apt package

reference link 430
Python, as scientific environment

historical retrospective 10, 11
references 11

Python code
accelerating, with Cython 163-165
accelerating, with Just-In-Time

compilation 154-156
accelerating, with Numba 154-156
distributing, across multiple cores with

IPython 185-187
Python Enhancement Proposal number 8. See

PEP8
python-graph package

about 419
reference link 420

Python implementation, of CMA-ES
reference link 323

Python, interfacing with C
reference link 150

Python package
about 35
Cython code, integrating within 166

Python program
step-by-step execution, tracing 124

Python Tools for Visual Studio. See PTVS
Python wheels, for Windows 64-bit

reference link 153
Python wrapper

references 371
Python(x,y) distribution

reference link 13

Q
Qhull

about 442
reference link 442

quantified signal 334
Quasi-Newton methods

about 322
reference link 323

Quine-McCluskey algorithm
about 466
reference link 467

R
R

about 261
references 261, 265
used, for analyzing data 261-264

Rackspace
reference link 94

Radial Basis Function (RBF) 296
Random Access Memory (RAM) 130
random forests

about 298
references 301
used, for selecting features for

regression 298-301
random graphs

about 419
reference link 420

random subspace method 301
random variables

about 237
manipulating 460, 461

random walk 410
rasterization 221
RATP

reference link 438
Ray tracing

reference link 173
reachability relation 437
reaction-diffusion systems

about 394
references 399

Read-Eval-Print Loop. See REPL
real analysis

references 460

490

real-valued functions
analyzing 459

rebasing 58
red, green, and blue (RGB) 354
regions 441
regression

about 72, 269
examples 269

regression analysis
reference link 265

regularization 271, 276
remote repository

cloning 54, 55
rendering pipeline

about 220
working 221

Renewal theory
reference link 409

REPL 50, 81
reproducible interactive computing

experiments
about 59
references 63
tips, for conducting 60-62

requests module
reference link 68

reStructuredText (reST) 60
ridge regression model

about 276, 279
drawback 279
reference link 279

road network
route planner, creating for 446-451

robust model 271
rolling average algorithm

implementing, with stride tricks 135-137
rolling mean 26
root

finding, of mathematical function 314-316
root finding course, SciPy

reference link 317
route planner

creating, for road network 446-451
row-major order 131
rpy2

reference link, for downloading 262

R tutorial
reference link 266

Rule 110 automaton
about 389
reference link 390

RunSnakeRun
about 121
reference link 121

S
saddle point 468
Sage

about 11, 454
references 470, 472

Sage notebook
creating 471, 472
reference link 470

sample 268
sample mean 234
scene graph 223
scientific visualization, Vispy 223
scikit-image package

about 353
reference links 353, 355

scikit-learn package
about 268
API 278
fit() method 278
overview 273-276
predict() method 278
references 273, 280
text data, handling 289-292

SciPy
about 10
ordinary differential equation,

simulating with 390-393
scipy.optimize module

about 315, 318
references 314, 317, 322

scipy.spatial.voronoi module
reference link, for documentation 442

seaborn
about 205
reference link, for installation

instructions 205
statistical plots, creating with 205-207

491

security, notebooks 82
segmentation tutorial, scikit-image

reference link 366
self.send_response() method

IOPub socket 44
message type 44

sequential locality 130
serial dependence

reference link 352
shader composition system 223
shaders

about 219
fragment shaders 221
vertex shaders 221

shape, array 30
Shapefile

about 442
reference links 420, 442

Shapely
about 419, 442
geospatial data, manipulating with 443-445
reference links 420, 442

shortest paths
reference links 419, 451

sigmoid function 284
signal processing

references 336
signals

about 333
analog 334
digital 334

SIMD paradigm 176
SimpleCV

reference link 354
simulated annealing algorithm

about 322
reference link 323

Single Instruction, Multiple Data
(SIMD) 127, 157

Singular Value Decomposition (SVD) 305
singular values 305
six module

about 48
reference link 48

small-world graphs
reference link 420

small-world networks 419

Sobel filter
about 359
reference link 361

social data analysis, Python
reference link 430

social network
analyzing, with NetworkX 425-429

sounds 354
sound synthesizer

creating, in notebook 377-379
SourceForge 53
spam filtering 269
sparse decomposition 336
sparse matrices

about 141
references 141

sparse matrix 290
spatial locality 130
Spatial Poisson process

reference link 409
speech sounds

digital filters, applying to 374-376
Sphinx

about 60
reference link 60

Split Bregman algorithm
reference link 361

Spyder 52
SSE 130
Stack Overflow

reference link 440, 448
standalone Python programs

memory_profiler package, using for 126
stashing 57
state diagram 405
statistical average 228
statistical data analysis 226
statistical hypothesis testing

about 233
references 236

statistical inference 227
statistical plots

creating, with seaborn 205-207
statistical textbooks

reference link 229
statistics

reference link 229

492

statsmodels
about 246
reference link 246

stats module 460, 461
stochastic algorithm 314
stochastic cellular automata 401
Stochastic Differential Equations

(SDEs)
about 401, 412
reference link 416
simulating 412-415

stochastic dynamical systems
about 401
reference link 402

Stochastic Partial Differential Equations
(SPDEs) 401

stream processors 179
strided indexing scheme 134
stride tricks

rolling average algorithm, implementing
with 135-137

using, with NumPy 133, 134
structure tensor

about 369
reference link 370

Sum of Products
reference link 467

supervised learning
about 268
reference link 268

Support Vector Classifier (SVC) 294
support vector machines (SVMs)

about 293
references 297, 298
used, for classifying tasks 293-297

SVD decomposition
reference link 305

SVG (Scalable Vector Graphics) 18
SWIG 150
symbolic computing, SymPy 454-456
SymPy

about 453, 454
number theory 462-464
reference link 459
used, for symbolic computing 454, 456

Synthesizer
reference link 379

T
task interface

reference link, for documentation 192
tasks

classifying, support vector machines
(SVMs) used 293-297

term frequency-inverse document frequency.
See tf-idf

test coverage 73
test-driven development 73
test functions for optimization

reference link 320
test set 268
test statistics 233
text data

handling, with scikit-learn 289-292
text editor

IPython, using with 51
text feature extraction, scikit-learn

reference link 292
Text-To-Speech (TTS) 374
tf-idf

about 292
reference link 292

Theano
about 156
reference link 157

thread 179
timbre

about 379
reference link 379

time-dependent signals 333
time profiling 116
time series

about 333, 352
autocorrelation, computing of 349-352
reference link 352

topological sort
about 430, 433
reference link 434
used for resolving dependencies, in directed

acyclic graph 430-433
TortoiseGit

reference link 53
total variation denoising

about 361

493

reference link 361
trace module

reference link 124
tracing tools 124
training set 268
trait attributes 102
transformations 223
transition matrix 405
Traveling Salesman Problem

reference link 419
truth table

Boolean propositional formula,
finding from 465, 466

Turing complete 389
Twitter API, rate limit

reference link 425
Twitter Developers website

reference link 425
Twitter Python package

reference link 425
two-dimensional array 30
typed memory views 165

U
unconstrained optimization 313
undirected graph 418
unit tests

reference links 66
writing, with nose 67-73

univariate method 227
unsupervised learning

about 268-270
clustering 270
density estimation 270
dimension reduction 270
manifold learning 270
methods 302
reference links 270, 306

urllib2 module 67
user profile 38

V
Vandermonde matrix

about 275, 279
reference link 279

variables 268, 227
variables types

attributes 221
uniforms 221

varyings
texture samplers 221
uniforms 221

vectorized instructions 130
vectorizer

about 292
reference link 292

vector space 268
Vega

about 208
reference link 208

vertex shader 219
vertices 418
views 131
Vincent

about 208, 214, 420
reference links 208, 214, 421

Viola-Jones object detection framework
about 371
reference link 373

violin plot 206
VirtualBox

reference link 470
virtualenv 61
Vispy

about 218, 221
for scientific visualization 223
references 223, 224

Vispy, for high-performance interactive
data visualizations 218-222

visuals 223
VizQL

about 208
reference link 208

voice frequency
reference link 377

Von Neumann stability analysis
references 399

Voronoi diagram
about 438
computing, of set of points 438-441
reference link 442

494

W
Wakari 188
warps 179
wavelet transform 342
weave module 163
webcam images

processing, from notebook 108-113
WebCL 184
WebGL 221
white box model 301
white noise

about 415
reference link 416

widget
references 102

widget architecture, IPython notebook 2.0+
references 108

Wiener process. See Brownian motion
Windows

about 152
DLL Hell 153
Python 32-bit 152
Python 64-bit 152

Winpdb 77
Wolfram's code

about 388
reference link 390

workflow, Git branching 56-58
workflows

references 59
workflows, unit testing 73
wrapper kernels

about 44
reference link 44

Z
Zachary's Karate Club graph 212
ZeroMQ (ZMQ)

reference link 81
z-test

performing 233-236

Thank you for buying

IPython Interactive Computing and
Visualization Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning IPython for
Interactive Computing and
Data Visualization
ISBN: 978-1-78216-993-2 Paperback: 138 pages

Learn IPython for interactive Python programming,
high-performance numerical computing, and
data visualization

1. A practical step-by-step tutorial which will help you
to replace the Python console with the powerful
IPython command-line interface.

2. Use the IPython notebook to modernize the way
you interact with Python.

3. Perform highly efficient computations with NumPy
and Pandas.

Python Data Visualization
Cookbook
ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1. Learn how to set up an optimal Python
environment for data visualization.

2. Understand the topics such as importing data for
visualization and formatting data for visualization.

3. Understand the underlying data and how to use
the right visualizations.

Please check www.PacktPub.com for information on our titles

NumPy Cookbook
ISBN: 978-1-84951-892-5 Paperback: 226 pages

Over 70 interesting recipes for learning the Python open
source mathematical library, NumPy

1. Do high performance calculations with clean and
efficient NumPy code.

2. Analyze large sets of data with statistical
functions.

3. Execute complex linear algebra and mathematical
computations.

Matplotlib for Python
Developers
ISBN: 978-1-84719-790-0 Paperback: 308 pages

Build remarkable publication-quality plots the easy way

1. Create high quality 2D plots by using Matplotlib
productively.

2. Incremental introduction to Matplotlib, from the
ground up to advanced levels.

3. Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as websites to utilize them in
Python applications.

Please check www.PacktPub.com for information on our titles

